
TkLayout Documentation
Release 1.0.0

Dreas Nielsen

Mar 17, 2018

Contents:

1 Purpose 3

2 Usage 5

3 The AppLayout Class 7

4 Example 11

5 Notes 15

6 Availability 17

7 Change Log 19

8 Copyright and License 21

9 Index 23

Python Module Index 25

i

ii

TkLayout Documentation, Release 1.0.0

TkLayout is a Python library that simplifies the development of Tkinter applications that have a complex layout of
widgets. Simplification is achieved by separating the description of the interface structure from the construction of the
nested frames that implement that structure.

Contents: 1

TkLayout Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

Purpose

The purpose of the tklayout library is to allow the developer of a Tkinter GUI to easily specify the layout of UI
widgets, or groups of widgets, and then to automatically create and populate the nested frames necessary to implement
the specified layout.

3

TkLayout Documentation, Release 1.0.0

4 Chapter 1. Purpose

CHAPTER 2

Usage

The usage pattern to be followed when using this library is as follows:

1. Design the layout and assign a name to each of the layout elements. An example is shown in Figure 1.

Fig. 2.1: Figure 1. Layout sketch with named elements

2. Instantiate an object of the AppLayout class from the tklayout library.

3. Identify layout elements that will appear in the same column or row, and, working from the innermost grouping
to the outermost, tell the AppLayout object about all of those relationships, using the column_elements() and
row_elements() methods.

4. Tell the AppLayout object to create a set of nested frames that conform to the specified layout groupings, using the
create_layout() method.

5. Tell the AppLayout object which functions to run to populate the named frames with the appropriate widgets, using
the build_elements() method.

5

TkLayout Documentation, Release 1.0.0

In all interactions with the AppLayout object, layout elements are referred to by the names assigned in step 1 above,
and as shown in Figure 1.

In step 3 above, the first elements in Figure 1 that would be identified as being grouped together would be the
topic_selection and date_selection elements. The second grouping to be identified would be the combination of the
previous two with the format_options element. Although Tkinter frames must be created from the outside in (i.e.,
the largest enclosing frame must be created first), the “inside-out” method of describing the layout of user interface
elements may be easier to visualize and to use.

The UI implementer does nto need to keep track of all of the frame objects that are used in the layout. The frame
objects that enclose the user-specified elements can be obtained from the AppLayout object using the frame()
method, identifying the element of interest by name.

Other methods that support access to frames and their elements after the nested set of frames has been built are:

• build_element(): This allows a build function to be specified (and run) for a single named UI element.

• frame_widgets(): This returns the list of all of the elements within the frame enclosing a user-specified
element.

6 Chapter 2. Usage

CHAPTER 3

The AppLayout Class

Creating a Tkinter layout is done with the AppLayout class in the tklayout module.

class tklayout.AppLayout
Represents the structure of Tkinter widgets (e.g., frames) and provides methods to create and populate the nested
set of frames.

class Element(components, config_dict=None, grid_opts=None, arrangement=’vertical’, compo-
nent_weights=[1], element_weight=1)

An Element object describes one Tkinter element–a Frame or other widget.

An Element object consists of:

• A list of component names (names are strings).

• A dictionary of configuration values for the frame that will contain the components.

• A dictionary of gridding options for the frame that will contain the components.

• A string indicating whether the component elements are arranged horizontally, vertically, or on
parallel pages.

• A weight or list of weights for the rows or columns represented by the components. If this list is
shorter than the list of components, its members will be recycled as many times as necessary so
that there is a weight for each component. The default is [1].

• The weight for the column or row in which all of the elements appear.

build_element(element_name, build_function)
Runs the specified build_function to populate the frame identified by element_name.

The ‘create_layout()’ method must have been called so that elements have frames assigned. A
build_function cannot be applied to an element that is synthesized by the AppLayout object (i.e., a name
returned by ‘column_elements()’ or ‘row_elements()’).

Parameters

• element_name – A user-assigned name for one of the layout elements.

7

TkLayout Documentation, Release 1.0.0

• build_function – A callback function that takes a Frame as an argument and popu-
lates that frame with widgets to implement the specific layout element.

build_elements(build_functions)
Populates a group of UI elements with widgets.

Parameters build_functions – A dictionary where the keys are element names and the
values are functions that take a frame as an argument and adds widgets or otherwise prepares
that frame for display and use.

The ‘create_layout()’ method must have been previously called so that elements have frames assigned.

column_elements(element_names, config_dict=None, grid_dict=None, row_weights=[1], col-
umn_weight=1)

Takes a list of names of elements to be vertically arranged, creates a new element that encloses those, and
returns a synthesized name for the element that is created.

Parameters

• element_names – A list of names (strings) of elements.

• config_dict – A dictionary of configuration specifications for the frame that will con-
tain the named elements.

• grid_dict – A dictionary of gridding options for the frame that will contain the named
elements.

• row_weights – A list of weights for the rows of the frame that will contain the named
elements. If this list is shorter than the element_names list, its members will be recycled
when assigning weights.

• column_weight – A weight for the single column in the frame that will contain the
named elements.

Returns A name (string) that is automatically assigned to the element that is created to contain
the named elements. This name may be used in the element_names argument to subsequent
calls to column_elements(), row_elements(). or page_elements.

create_layout(master_widget, master_element_name, row=0, column=0, row_weight=1, col-
umn_weight=1)

Creates a nested set of frames corresponding to the application layout that has been specified.

The application layout must have been previously described by calls to the column_elements,
row_elements, and page_elements methods.

Parameters

• master_widget – A container widget (e.g., Frame) that will serve as the root for all
the frames to be created.

• master_element_name – The name of the element to be placed in the top-level frame.
This name must be one of those supplied to ‘row_elements()’ or ‘column_elements()’, or
returned by those methods.

• row – The row number within the master_widget for the top-level frame that will be
created. Optional; defaults to 0.

• column – The column number within the master widget for the top-level frame that will
be created. Optional; defaults to 0.

• row_weight – The row weight for the frame’s row in the master_widget. Optional;
defaults to 1.

8 Chapter 3. The AppLayout Class

TkLayout Documentation, Release 1.0.0

• column_weight – The column weight for the frame’s column in the master widget.
Optional; defaults to 1.

frame(element_name)
Returns the frame for the given element name.

The frame will only be valid after the ‘create_layout()’ method has been called.

frame_widgets(element_name)
Returns a list of all widgets within the frame for the given element name. The list will only be populated
if the ‘create_layout()’ method has been called and then a suitable ‘build’ function has been called for this
element.

layout_as_json(show_attributes=False)
Return a representation of the structure as a JSON string. Attribute names values may optionally be
included.

This is intended primarily for debugging.

Returns A string formatted as JSON.

page_elements(element_names, config_dict=None, grid_dict=None)
Takes a list of names of elements to be arranged on separate pages or panes (e.g., pages of a Notebook
widget), creates a new element that contains those, and returns a synthesized name for the element that is
created.

Parameters

• element_names – A list of names (strings) of elements.

• config_dict – A dictionary of configuration specifications for the frame that will con-
tain the named elements.

• grid_dict – A dictionary of gridding options for the frame that will contain the named
elements.

Returns A name (string) that is automatically assigned to the element that is created to contain
the named elements. This name may be used in the element_names argument to subsequent
calls to column_elements(), row_elements(), or page_elements.

row_elements(element_names, config_dict=None, grid_dict=None, column_weights=[1],
row_weight=1)

Takes a list of names of elements to be horizontally arranged, creates a new element that encloses those,
and returns a synthesized name for the element that is created.

Parameters

• element_names – A list of names (strings) of elements.

• config_dict – A dictionary of configuration specifications for the frame that will con-
tain the named elements.

• grid_dict – A dictionary of gridding options for the frame that will contain the named
elements.

• column_weights – A list of weights for the columns of the frame that will contain the
named elements. If this list is shorter than the element_names list, its members will be
recycled when assigning weights.

• row_weight – A weight for the single row in the frame that will contain the named
elements.

9

TkLayout Documentation, Release 1.0.0

Returns A name (string) that is automatically assigned to the element that is created to contain
the named elements. This name may be used in the element_names argument to subsequent
calls to column_elements(), row_elements(). or page_elements.

10 Chapter 3. The AppLayout Class

CHAPTER 4

Example

The following code is a simple usage of the tklayout module to demonstrate the use of the AppLayout class and
its methods.

try:
import Tkinter as tk

except:
import tkinter as tk

import tklayout as tkb

def test():
Define functions to build each of the user-defined elements
that will appear in the application. (These 'build' functions
are nested within the 'test' function, but need not be.)

Build element A.
def build_a(parent):

w = tk.Label(parent, text="Element A", justify=tk.CENTER)
w.grid(row=0, column=0, padx=10, pady=5, sticky=tk.NSEW)

Build element B.
def build_b(parent):

w = tk.Label(parent, text="Element B", justify=tk.CENTER, fg="blue")
w.grid(row=0, column=0, padx=10, pady=5, sticky=tk.NSEW)
parent.rowconfigure(0, weight=1)
parent.columnconfigure(0, weight=1)

Build element C.
def build_c(parent):

w = tk.Label(parent, text="Element C", justify=tk.CENTER)
w.grid(row=0, column=0, padx=10, pady=5, sticky=tk.NSEW)
parent.rowconfigure(0, weight=1)
parent.columnconfigure(0, weight=1)

Build element D.
def build_d(parent):

w = tk.Label(parent, text="Element D", justify=tk.CENTER, fg="green")

11

TkLayout Documentation, Release 1.0.0

w.grid(row=0, column=0, padx=5, pady=5, sticky=tk.EW)
Build element E.
def build_e(parent):html copyright entity

w = tk.Label(parent, text="Element E", justify=tk.CENTER)
w.grid(row=0, column=0, padx=5, pady=5, sticky=tk.NSEW)

Initialize the application layout object.
lo = tkb.AppLayout()

Define configuration and gridding options that will be used
for the frames that enclose the user-defined elements.
config_opts = {"borderwidth": 3, "relief": tk.GROOVE}
grid_opts = {"sticky": tk.NSEW}

Define the structure of the application elements.
ab = lo.column_elements(["A", "B"], config_opts, grid_opts)
abc = lo.row_elements([ab, "C"], config_opts, grid_opts)
app = lo.column_elements(["D", abc, "E"], config_opts, grid_opts, row_weights=[0,

→˓1,1])

Create the Tkinter root object.
root = tk.Tk()

Create the frames implementing the specified layout.
lo.create_layout(root, app, row=0, column=0, row_weight=1, column_weight=1)

Fill in the user-defined element frames with widgets.
lo.build_elements({"A": build_a, "B": build_b, "C": build_c, "D": build_d, "E":

→˓build_e})

Run the application.
root.mainloop()

test()

This will produce an application window with the layout shown below.

Fig. 4.1: Figure 2. Example Layout

Frame borders are used in this example to illustrate the nested set of frames that is created by create_layout().

12 Chapter 4. Example

TkLayout Documentation, Release 1.0.0

The layout of the UI elements can be easily altered just by changing the calls to column_elements() and
row_elements(). For example, changing the calls to the row_elements() and column_elements()meth-
ods in the previous script with this set of method calls:

cb = lo.column_elements(["C", "B"], config_opts, grid_opts)
ae = lo.column_elements(["A", "E"], config_opts, grid_opts)
cbae = lo.row_elements([cb, ae], config_opts, grid_opts)
app = lo.column_elements([cbae, "D"], config_opts, grid_opts)

will produce a different layout for the same application, as shown below.

Fig. 4.2: Figure 3. Alternative Layout

13

TkLayout Documentation, Release 1.0.0

14 Chapter 4. Example

CHAPTER 5

Notes

5.1 Geometry Managers

The build_layout() method uses the grid geometry manager for all frames that it creates. However, the pack
and place geometry managers can be used instead to populate any of the frames that enclose user-defined elements.

5.2 Resizing

By default, all frames are made resizeable. Every row and column is given a weight of 1, and every frame is made
sticky to its N, S, E, and W enclosing frame. This default differs from Tkinter’s: Tkinter by default does not not create
or grid frames so that they are automatically resizeable. The default for the AppLayout class differs because resizing
is frequently desirable, and it is generally easier to suppress resizing than it is to enable it.

The default weights and configuration options can be changed with the optional arguments to the row_elements(),
column_elements(), and build_elements() methods.

15

TkLayout Documentation, Release 1.0.0

16 Chapter 5. Notes

CHAPTER 6

Availability

The TkLayout library is available on PyPi. It can be installed with:

pip install tklayout

The latest code is available from the Bibucket repository.

17

https://pypi.org/project/tklayout/
https://bitbucket.org/rdnielsen/tklayout

TkLayout Documentation, Release 1.0.0

18 Chapter 6. Availability

CHAPTER 7

Change Log

Date Ver-
sion

Revision

2018-
03-
17

1.0.0 Revised documentation.

2018-
01-
26

0.8.0 Removed borders from automatically created frames.

2018-
01-
24

0.7.0 Added the ‘frame_widgets()’ method to the AppLayout class. Eliminated redundant gridding when
no grid options. Made frames created by ‘create_layout()’ sticky to NSEW by default. Modified
Tkinter import to run under Python 3.

2018-
01-
22

0.6.0 Added a version number and added/edited docstrings.

2018-
01-
21

0.5.0 Completed initial draft of all necessary (maybe) methods of the AppLayout class.

2018-
01-
17

0.1.0 Created, incomplete.

19

TkLayout Documentation, Release 1.0.0

20 Chapter 7. Change Log

CHAPTER 8

Copyright and License

Copyright 2018, R.Dreas Nielsen

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. The GNU General Public License is available at http://www.gnu.org/licenses/.

21

http://www.gnu.org/licenses/

TkLayout Documentation, Release 1.0.0

22 Chapter 8. Copyright and License

CHAPTER 9

Index

• genindex

23

TkLayout Documentation, Release 1.0.0

24 Chapter 9. Index

Python Module Index

t
tklayout, 7

25

TkLayout Documentation, Release 1.0.0

26 Python Module Index

Index

A
AppLayout (class in tklayout), 7
AppLayout.Element (class in tklayout), 7

B
build_element() (tklayout.AppLayout method), 7
build_elements() (tklayout.AppLayout method), 8

C
column_elements() (tklayout.AppLayout method), 8
create_layout() (tklayout.AppLayout method), 8

F
frame() (tklayout.AppLayout method), 9
frame_widgets() (tklayout.AppLayout method), 9

L
layout_as_json() (tklayout.AppLayout method), 9

P
page_elements() (tklayout.AppLayout method), 9

R
row_elements() (tklayout.AppLayout method), 9

T
tklayout (module), 7

27

	Purpose
	Usage
	The AppLayout Class
	Example
	Notes
	Availability
	Change Log
	Copyright and License
	Index
	Python Module Index

